Molecular evolution of type 1 serine/threonine protein phosphatases.
نویسندگان
چکیده
Type 1 serine/threonine protein phosphatases (PP1s) play key roles in many cellular processes. To understand the evolutionary relationships among PP1s from various kingdoms and to provide a valid basis to evaluate the structure-function relationships of these phosphatases, 44 PP1 sequences were aligned, revealing a high sequence similarity among PP1 homologs. About one-third of the total amino acids are conserved in all the sequences studied. Most of these conserved amino acids are located within a 270-amino-acid core region. They include most sites critical to the activity and regulation of PP1s based on three-dimensional structural studies of mammalian PP1s. Positional variation analysis using a sliding window approach revealed two variable blocks in the 270-amino-acid core region. The major variable block corresponds to a subdomain composed of three alpha-helices (alphaG, alphaH, and alphaI) and three beta-sheets (beta7, beta8, and beta9). Phylogenetic analyses suggested that plant and animal PP1s form distinct monophyletic groups. The plant PP1 family contains several subgroups that may be older than the monocot-dicot divergence. In the animal PP1 family, different vertebrate isoforms appear to form distinct subgroups. Relative substitution rate studies indicated that plant PP1s are more diverse than animal PP1s, with an average substitution rate 1.5 times as large as that of animal PP1s. The possible involvement of PP1s in the establishment of multicellularity is discussed.
منابع مشابه
Evolution of protein phosphatases in plants and animals.
Protein phosphorylation appears to be a universal mechanism of protein regulation. Genomics has provided the means to compile inventories of protein phosphatases across a wide selection of organisms and this has supplied insights into the evolution of this group of enzymes. Protein phosphatases evolved independently several times yielding the groups we observe today. Starting from a core cataly...
متن کاملMultiplicity of protein serine-threonine phosphatases in PC12 pheochromocytoma and FTO-2B hepatoma cells.
Protein purification and molecular cloning have defined five classes of protein serine-threonine phosphatase catalytic subunits referred to as types 1, 2A, 2B (calcineurin), 2C, and X. Protein serine-threonine phosphatases 1, 2A, 2B, and X appear to have significant sequence homologies, whereas the 2C enzyme is more divergent. We have used the polymerase chain reaction to define the multiplicit...
متن کاملLife among the primitives: protein O-phosphatases in prokaryotes.
Prokaryotes contain at least five distinct families of protein O-phosphatases, including AceK, the chimeric isocitrate dehydrogenase kinase/phosphatase, and four protein phosphatase families first identified and characterized in Eukaryotes. The latter consist of the PPP and PPM families of protein-serine/threonine phosphatases, and the low molecular weight and conventional families of protein-t...
متن کاملPlant Protein Phosphatases.
Posttranslational modification of proteins by phosphorylation is a universal mechanism for regulating diverse biological functions. Recognition that many cellular proteins are reversibly phosphorylated in response to external stimuli or intracellular signals has generated an ongoing interest in identifying and characterizing plant protein kinases and protein phosphatases that modulate the phosp...
متن کاملTargeting protein serine/threonine phosphatases for drug development.
With the recent clinical success of drugs targeting protein kinase activity, drug discovery efforts are focusing on the role of reversible protein phosphorylation in disease states. The activity of protein phosphatases, enzymes that oppose protein kinases, can also be manipulated to alter cellular signaling for therapeutic benefits. In this review, we present protein serine/threonine phosphatas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 12 1 شماره
صفحات -
تاریخ انتشار 1999